设为首页收藏本站考试中心

吾爱考研论坛

 找回密码
 立即注册

QQ登录

手机端百度浏览器不支持QQ登陆

搜索
热搜: 商志 张宇

2022年海南师范大学618数学分析考研大纲及参考书目

[复制链接]
  • TA的每日心情
    郁闷
    10 小时前
  • 签到天数: 34 天

    [LV.5]常住居民I

    学币
    发表于 2022-12-21 21:24:16 | 显示全部楼层 |阅读模式

    马上注册,轻松获取资料,结交更多研友,享受更多功能 !

    您需要 登录 才可以下载或查看,没有账号?立即注册

    x
    从海南师范大学研究生院获悉,
    海南师范大学全国硕士研究生招生自命题考试大纲
    考试科目代码:[618]              考试科目名称:数学分析
    ﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡
    主要参考书目
    1.《数学分析》(上、下),华东师大数学系编,高等教育出版社2010。  
    一、考试形式与试卷结构
    (一)试卷成绩及考试时间
    本试卷满分为150分,考试时间为180分钟。
    (二)答题方式
    答题方式为闭卷、笔试。
    (三)试卷结构
    计算题、解答题、证明题等
    二、考试目标:
    1.掌握数学分析的基本概念和基础知识。
    2.理解数学分析的基本理论和基本方法。
    3.运用数学分析的基本理论和方法来分析、解决相关的实际问题。
    三、考试范围:
    (一)实数集与函数
    实数的性质、确界原理,函数概念,函数的奇偶性、周期性、有界性、无界性,复合函数和反函数,初等函数。
    (二)极限与函数的连续性
    数列和函数极限的概念,极限的四则运算及其性质,单调有界原理,Heine定理,二个重要极限,函数的连续性,间断点,初等函数的连续性及其性质,闭区间上连续函数的性质,无穷小量与无穷大量的比较。
    导数与微分
    导数定义,导数的几何意义,导数的四则运算、反函数的求导法则和复合函数求导的链式法则; 隐函数与参数方程确定的函数的求导法则;高阶导数;微分概念与微分的几何解释;微分法则,一阶微分的形式不变性。
    微分中值定理及其应用
    极值概念;Fermat定理和微分中值定理(Rolle定理,Lagrange中值定理,Cauchy中值定理);泰勒公式, L'Hospital法则;利用导数研究函数的各种性质(单调性与极值,函数的凸性); 函数极值的判别法;利用导数求函数的渐近线并且绘制函数的图像。
    (五)实数的完备性
    区间套定理;聚点定理;有限覆盖定理。
    (六)不定积分
    原函数和不定积分的概念;不定积分的基本公式;换元积分法,分部积分法;有理函数的积分;三角函数有理式的积分;某些无理函数的积分。
    (七)定积分
    定积分概念及其几何意义;定积分的基本性质;函数的一致连续性,康托定理; Newton-Leibniz公式;定积分换元积分法和分部积分法。
    (八)定积分的应用
    微元法;定积分在几何上的应用(平面图形的面积,已知截面积的立体体积,旋转体的体积,平面上的光滑曲线的弧长,曲线曲率);定积分在物理上的应用(总压力问题,变力作功问题)。
    (九)广义积分
    无穷积分和瑕积分的概念及其敛散性(包括绝对收敛和条件收敛),无穷积分和瑕积分的性质,Cauchy收敛准则,比较判别法,积分第二中值定理,Abel阿贝尔判别法和Dirichlet判别法。
    (十)数项级数
    数项级数的收敛和发散,级数收敛的必要条件,收敛级数的基本性质,正项级数收敛的判别法(比较判别法、比值判别法、根式判别法、拉阿比判别法、积分判别法) ;交错级数和Leibniz判别法,绝对收敛与条件收敛,柯西收敛原理,Abel变换以及关于一般数项级数的Abel阿贝尔判别法和Dirichlet判别法,级数的重排问题及乘积问题。
    (十一) 函数项级数
    函数列一致收敛性概念及其几何意义,函数列一致收敛性的判别法,一致收敛函数列的极限函数的分析性质(连续性、可积性、可微性);函数项级数一致收敛性概念,一致收敛的Cauchy收敛准则,函数项级数一致收敛的必要条件,函数项级数一致收敛性的判别法 (M判别法、Abel判别法、Dirichlet判别法),一致收敛的函数项级数的和函数的分析性质(连续性、可积性、可微性)。
    (十二) 幂级数
    幂级数的收敛域和收敛半径,Abel第一定理和第二定理,幂级数和函数的性质(连续性、可积性、可微性),函数的幂级数展开。
    (十三)傅里叶级数
    三角函数系,三角级数的概念,以2p为周期的函数的Fourier级数,Fourier级数的收敛定理,函数的Fourier级数展开法。
    (十四) 多元函数的极限与连续
    平面点集的有关概念(区域、距离、聚点、开集和闭集等),二维空间的基本定理(矩形套定理、致密性定理、Cauchy收敛原理、有限覆盖定理),多元函数的极限和连续性,多元函数的累次极限,有界闭区域上的连续函数的性质(有界性、最值性、介值性、一致连续性)。
    (十五)偏导数与全微分
    偏导数的概念,全微分的概念,偏导数与微分的关系;多元复合函数的微分法,多元函数一阶微分形式的不变性,高阶偏导数;方向导数的概念及求法,多元函数的Taylor公式。
    (十六)隐函数存在定理
    单个方程的隐函数存在定理,方程组的隐函数组存在定理,反函数组存在定理。
    (十七)极值和条件极值
    多元函数极值(条件极值与无条件极值)概念,稳定点概念,多元函数无条件极值的必要条件和充分条件,求多元函数无 条件极值的Lagrange乘数法。
    (十八)含参变量的积分
    含参变量的正常积分概念,含参变量的正常积分的分析性质(连续性定理、积分次序交换定理与积分号下求导定理),含参变量的正常积分的计算;含参变量的广义积分的一致收敛概念,含参变量的广义积分的一致收敛的判别法(Cauchy收敛原理、Weierstrass判别法、Abel判别法、Dirichlet判别法及Dini定理);一致收敛积分的分析性质(连续性定理、积分次序交换定理与积分号下求导定理);Euler积分:Beta函数和Gamma函数的定义、性质、递推公式及二者之间的关系。
    (十九) 重积分
    重积分的概念及其基本性质,化重积分为累次积分的计算方法;重积分的变量代换,极坐标变换,柱坐标变换,球坐标变换;曲面面积的计算,重积分在物理中的应用(质心,转动惯量等)。
    (二十)曲线积分与曲面积分
    第一型曲线积分的概念,第一型曲线积分的性质(线性性与路径可加性),第一型曲线积分的计算公式及其应用;第一型曲面积分的概念、计算及应用。第二型曲线积分的概念及性质(方向性、线性性与路径可加性),第二型曲线积分的计算公式及其应用;理解曲面的侧的相关概念,第二型曲面积分的概念及性质(方向性、线性性与曲面可加性),第二型曲面积分的计算及应用。
    (二十一) 各种积分间的联系
    Green公式,用Green公式计算曲线积分及求区域的面积,曲线积分与路径无关的条件及其应用;Gauss公式及其应用,Stokes公式及其应用。
    四、主要参考书目
    1.《数学分析》(上、下),华东师大数学系编,高等教育出版社2010。

    [发帖际遇]: kyadmin 发帖时在路边捡到 1 学币,偷偷放进了口袋. 幸运榜 / 衰神榜




    上一篇:2023年辽宁师范大学人文地理学硕士初试考试大纲
    下一篇:2023年湖南工商大学税收学考研加试大纲
    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

     
     
    在线客服
    吾爱考研论坛QQ交流群:966918454
    工作时间:
    8:30-23:00
     

    QQ|网站地图|电子书pdf|视频资料|小黑屋|吾爱考研论坛 |网站地图

    GMT+8, 2023-2-9 19:54 , Processed in 0.185773 second(s), 42 queries , Gzip On.

    Powered by 吾爱考研 X3.4

    www.52kaoyan.cn; 2001-2021, Tencent Cloud.

    快速回复 返回顶部 返回列表